喜贺南方学员囊括14年省委、省政府、工商、地税、监狱等热门职位状元
您的当前位置:南方公务员考试网 >> 信息服务 >> 行测信息 >> 正文内容
中国剩余定理及应用
本文转载自:〖无〗    发表时间:〖2012-05-18〗   本文作者:admin   浏览次数:2198

  “中国剩余定理”算理及其应用

  “中国剩余定理”算理及其应用:

  为什么这样解呢?因为70是5和7的公倍数,且除以3余1。21是3和7的公倍数,且除以5余1。15是3和5的公倍数,且除以7余1。(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。

  用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。

  例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几?

  题中3、4、5三个数两两互质。

  则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

  为了使20被3除余1,用20×2=40;

  使15被4除余1,用15×3=45;

  使12被5除余1,用12×3=36。

  然后,40×1+45×2+36×4=274,

  因为,274>60,所以,274-60×4=34,就是所求的数。

  例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?

  题中3、7、8三个数两两互质。

  则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

  为了使56被3除余1,用56×2=112;

  使24被7除余1,用24×5=120。

  使21被8除余1,用21×5=105;

  然后,112×2+120×4+105×5=1229,

  因为,1229>168,所以,1229-168×7=53,就是所求的数。

  例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

  题中5、8、11三个数两两互质。

  则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

  为了使88被5除余1,用88×2=176;

  使55被8除余1,用55×7=385;

  使40被11除余1,用40×8=320。

  然后,176×4+385×3+320×2=2499,

  因为,2499>440,所以,2499-440×5=299,就是所求的数。

  例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)

  题中9、7、5三个数两两互质。

  则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

  为了使35被9除余1,用35×8=280;

  使45被7除余1,用45×5=225;

  使63被5除余1,用63×2=126。

  然后,280×5+225×1+126×2=1877,

  因为,1877>315,所以,1877-315×5=302,就是所求的数。

  例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)

  题中9、7、5三个数两两互质。

  则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

  为了使35被9除余1,用35×8=280;

  使45被7除余1,用45×5=225;

  使63被5除余1,用63×2=126。

  然后,280×6+225×2+126×3=2508,

  因为,2508>315,所以,2508-315×7=303,就是所求的数。

  (例5与例4的除数相同,那么各个余数要乘的“数”也分别相同,所不同的就是最后两步。)

  关于“中国剩余定理”类型题目的另外解法

  “中国剩余定理”解的题目其实就是“余数问题”,这种题目,也可以用倍数和余数的方法解决。不懂论坛上有没人发过。小学奥赛考试时学习过,也用过,现在把方法写出来,如果懂的也别笑我,呵呵。

  选了一本小学奥赛的书上的题目,讲下:

  例一,一个数被5除余2,被6除少2,被7除少3,这个数最小是多少?

  解法:题目可以看成,被5除余2,被6除余4,被7除余4。看到那个“被6除余4,被7除余4”了么,有同余数的话,只要求出6和7的最小公倍数,再加上4,就是满足后面条件的数了,6X7+4=46。下面一步试下46能不能满足第一个条件“一个数被5除余2”。不行的话,只要再46加上6和7的最小公倍数42,一直加到能满足“一个数被5除余2”。这步的原因是,42是6和7的最小公倍数,再怎么加都会满足

  “被6除余4,被7除余4”的条件。

  46+42=88

  46+42+42=130

  46+42+42+42=172

  这是一种形式的,它的前提是条件中出现同余数的情况,如果遇到没有的,下面讲

  例二,一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?

  解法:题目可以看成,除3余2,除5余3,除7余4。没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加4,直到所得的数除5余3。得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”

  4+7=11

  11+7=18

  18+35=53

  这种方法也可以解“中国剩余定理”解的题目。比“中国剩余定理”更好理解,我觉的速度上会比那个繁琐的公式化的解题更快。

  大家可以试下

 

关于我们 | 汇款方式 | 考试培训 | 辅导资料 | 行测信息 | 申论信息 | 面试信息 |南方公务员博客 | 网站地图 | sitemap
   广东公务考试|广东省公务面试|广州公务考试|广州公务面试|深圳公务考试|深圳公务面试|广东公务笔试培训|广东公务面试培训-国家公务考试


联系地址:广州天河岗顶华南师范大学产业大楼105室,南方公务考试研究中心(总部)(广州市天河区中山大道西55号华师南门直入约350米)

联系电话:020-85217183,020-85213838

Copyright © 2007-2017 南方公务考试网 http://www.nfgwypass.cn/ 版权所有

   粤ICP备17020522号   技术支持:永孚科技-广州网站建设专家       
  • 电话咨询

  • 020-85217183
  • 020-85213838
  • QQ交流群

  • 310206975
  • 255955650